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SUMMARY: 

This paper proposes an active aerodynamic flutter control method for long-span bridge with controllable flaps. A 

theoretical framework for controlling scheme with a pair of rotatable flaps on the wind fairing of the deck is 

established, and a state space expression is derived and an optimal control algorithm is introduced. The movement of 

the flaps is determined by a feedback control algorithm. The active control system can improve the aerodynamic 

stability of long-span bridges through the aerodynamic forces generated by these flaps. Taking an ideal flat plate as 

an object, the flutter control of the flaps is verified through numerical simulation, and the controlling effectiveness is 

confirmed. 
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1. INTRODUCTION 

With the development of modern infrastructure long-span bridges have been proposed or under 

construction to cross sea or deep canyons. The difficulty of deep-water construction and 

requirement of shipping traffic require the modern bridges to cross these regions with a super-

long single span. The continuous increment in span length and usage of advanced materials in 

these bridges greatly reduces their structural stiffness and damping, which results in a more wind 

sensitive structures. The flutter instability, which can cause bridge collapse, is an important 

consideration during the design process. Raggett et al. (1987) introduced an advanced active 

control method based on active flaps that originated in aeronautical engineering to improve the 

flutter stability of bridges. It has received intensive attention in the past ten years owing to the 

more flexibility of bridges and potentially stronger extreme wind events as a result of climate 

change (Ostenfeld and Larsen, 1997). 

 

2. AERODYNAMIC FORCES MODELING 

Theordorsen (1949) derived the unsteady aerodynamic expression of a wing-aileron-tab 

combination system with the potential flow assumption, and its theoretical solution can 

accurately simulate the aerodynamic lift and torque generated by the movement of the wing in 



the air. This model can be transformed into an aerodynamic model with two active flaps attached 

to the wing, which can be used to describe flutter control models for most bridge decks installed 

with active flaps (Hansen, 2001), as shown in Figure 1. 

 
 

Figure 1. Simplified model with windward and leeward edge control flaps. 

 
where 𝛼, 𝛼𝑙, and 𝛼𝑡  are the torsion angles of the wing and windward flap and leeward flap, 
respectively. The self-excited force generated by the deck-flap system can be considered as the 
superposition of the respective aerodynamic forces of the deck, windward flap and leeward flaps. 
The expression in the form of flutter derivatives is shown as follows: 
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where 𝐿𝑙 , 𝑀𝑙 , 𝐿𝑡  and 𝑀𝑡  represent the aerodynamic lift and torque on the windward and 
leeward flaps to the deck-flap system, respectively. 𝜌 is the air density, 𝑈 is the wind speed, 
𝐵 is the width of the deck-flap system, 𝐾 = 𝜔𝐵/𝑈 is the reduced frequency, ℎ and 𝛼 
are the vertical and torsional displacements of the deck, ℎ̇ and 𝛼̇ are the vertical and 
torsional speeds, respectively. 𝛼𝑙  and 𝛼𝑡  are the torsional displacements of the 
windward and leeward flaps, respectively; 𝛼̇𝑙 and 𝛼̇𝑡 are the torsional motion speeds of 
the windward and leeward flaps, respectively. 𝐻1−4

∗ , 𝐴1−4
∗ , 𝐻5−8

∗  and 𝐴5−8
∗  are the 

nondimensional flutter derivatives for the deck and flaps, respectively. However, the series 
of flutter derivatives at discrete frequencies are not sufficient in the control designs. To solve this 
problem, rational function approximation method is introduced, which is firstly presented by 
Roger (1977) to solve wing motion problems.  
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where 𝚫𝒍 and 𝚯𝒍 are aerodynamic state variable; 𝐗 = [ℎ 𝛼]𝑇 and 𝚼 = [𝛼𝑙 𝛼𝑡]𝑇 assemble the 

displacements of deck and flaps, respectively. 𝐀𝟏, 𝐀𝟐 and 𝐀𝟑 represent aerodynamic stiffness, 

damping and mass of deck, respectively; 𝐏𝟏 , 𝐏𝟐  and 𝐏𝟑  represent aerodynamic stiffness, 

damping and mass of flaps, respectively; 𝑑𝑙 and 𝑔𝑙 represent decay rate of lag terms. 

 

3. OPTIMUM CONTROL 

Kinetic equation of this deck-flaps system can be expressed as 
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(3) into Eq. (4). Kinetic equation of the deck can be re-expressed as  
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New matrix notations in Eq. (5) are given in Eqs. (6) and (7). 

 

𝐌̅ = 𝐌 − 𝜌𝐵2𝐛𝐓𝐀𝟑𝐛, 𝐂̅ = 𝐂𝟎 − 𝜌𝑈𝐵𝐛𝐓𝐀𝟐𝐛, 𝐊̅ = 𝐊𝟎 − 𝜌𝑈2𝐛𝐓𝐀𝟏𝐛 (6) 

𝚪𝟏 = 𝜌𝑈2𝐛𝐓𝐏𝟏𝐛, 𝚪𝟐 = 𝜌𝑈𝐵𝐛𝐓𝐏𝟐𝐛, 𝚪𝟑 = 𝜌𝐵2𝐛𝐓𝐏𝟑𝐛 (7) 

 

The higher-order derivative terms in the equation should be eliminate when establishing a state-

space representation, thus, it is necessary to retransform the kinetic equation which is given as 

Eq. (8).  
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The new state variables are selected as 𝚭 = [𝛋𝟏, 𝛋𝟐, 𝛋∆,𝟏,⋯𝛋∆,𝒎, 𝛋𝜣,𝟏,⋯𝛋𝜣,𝒎]
𝑻
 

 

{

𝛋𝟏 = 𝐗 − 𝐌̅−𝟏𝚪𝟑𝚼,   𝛋𝟐 = ∫(𝐗 + 𝐊̅−𝟏𝚪𝟏𝚼)dt
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𝛋𝜣,𝟏 = ∫𝚯𝟏 𝑑𝑡, ⋯ , 𝛋𝜣,𝒎 = ∫𝚯𝒎 𝑑𝑡

 (9) 

 

Afterwards, the kinetic equations of the deck-flap system can be described as the state-space 

representation: 
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𝑩𝒄 = [𝐌̅−𝟏𝚪𝟐 − 𝐌̅−𝟏𝐂̅𝐌̅−𝟏𝚪𝟑, 𝐌̅−𝟏𝚪𝟑 − 𝐊̅−𝟏𝚪𝟏, 𝐛𝐓𝐀𝟒𝐛𝐌̅−𝟏𝚪𝟑,⋯ , 𝐛𝐓𝐀𝒎𝐛𝐌̅−𝟏𝚪𝟑, 𝐛
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𝑪𝒄 = [𝐈 0 0 ⋯ 0 0 ⋯ 0] (11c) 

𝑫𝒄 = 𝐌̅−𝟏𝚪𝟑 (11d) 

 



The motion of the flaps is determined by 𝚼 = −𝐊𝐙, and 𝐊 is the feedback gain matrix. The deck-

flap system can be regarded as a linear time-invariant system and transformed into an infinite-

time regulator problem. Thus, the objective optimization function is 
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where, 𝐐 and 𝐑 represent the constant weight matrix, and finally can be solved by a Riccati 

equation which is given as 
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where 𝐘 is an undetermined constant matrix. 

 

4. NUMERICAL CASE 

According to the expression of state space and the optimal control method, the feedback control 

parameters of the deck-flap system can be obtained. Taking the ideal plate with flaps as the 

object to simulate the movement before and after the control, the torsional displacement is shown 

in Figure 2. 

 
 

Figure 2. Torsional displacement of deck-flap system with and without control (U=critical wind speed of the flutter) 

 

5. CONCLUSIONS 

The aerodynamic state space expression of the deck-flap system is derived, and the flutter 

control simulation is carried out with an ideal flat plate as the example. The method of obtaining 

aerodynamic parameters of the actual bridge section and the control effect of the active flaps will 

be finished in further work and presented in full paper. 
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